<listing id="5ddbt"><cite id="5ddbt"></cite></listing>
<var id="5ddbt"></var><cite id="5ddbt"></cite><var id="5ddbt"></var>
<listing id="5ddbt"><del id="5ddbt"><span id="5ddbt"></span></del></listing>
<var id="5ddbt"><strike id="5ddbt"></strike></var>
<cite id="5ddbt"><video id="5ddbt"></video></cite>
<cite id="5ddbt"><video id="5ddbt"></video></cite>
<cite id="5ddbt"></cite>
<menuitem id="5ddbt"><strike id="5ddbt"></strike></menuitem><menuitem id="5ddbt"><strike id="5ddbt"></strike></menuitem>
<var id="5ddbt"><video id="5ddbt"></video></var>
<cite id="5ddbt"><video id="5ddbt"></video></cite>
<th id="5ddbt"><th id="5ddbt"><listing id="5ddbt"></listing></th></th>
<var id="5ddbt"></var>
歡迎光臨無錫固亞德電力設備有限公司官網!科研、生產、銷售、服務于一體的預裝式變電站殼體供應商!

專注 專心 專業 創新 合作 共贏

劉洪靜18915342563
燕飛飛18020500203
黃嘉明15358004965
qq
0510-88150203
無錫固亞德電力設備有限公司是一家致力于生產、銷售、服務于一體的預裝式變電站預制艙殼體生產廠家!
當前位置:首頁產品中心功能分類220kV,110kV雙層變電站

Product Center

產品中心

俄羅斯阿穆爾氣體處理站項目


2019-04-15
+ 產品簡介 +
為了校核俄羅斯阿穆爾氣體處理站項目艙體結構設計的合理性,采用有限元仿真的方法,建立艙體的3維有限元仿真模型,進行靜止平放狀態下艙體承力框架、地腳螺栓的強度及計算分析;進一步的,分析艙體吊裝狀態下的艙體、起吊點和吊具強度。通過有限元仿真數據的處理,對關鍵結構件的強度及變形進行分析,最后給出變形及強度校核結果。
3D finite element simulation model is built by the method of finite element simulation to calculate and analyze the strength of cabin bearing frames and anchor bolts in static placement, thus verifying the reasonability of the cabin structure design in the Russia Amur Gas Treatment Station Project, to further analyze the strength of the cabin, hoisting points and hoisting tools in hoisting state. The strength and deformation of key structural components are analyzed by processing finite element simulation data to finally present deformation and strength verification results.
艙體總體尺寸:15m(總長)×4.5 m(寬)×10.5m(總高),其中一層高2.8m、二層高3.5m(含坡頂3.75m)、三層高3.32m(含坡頂3.75m)。
Overall dimension of cabin: 15m (overall length) ×4.5m (width) ×10.5m (overall height), wherein the first layer is 2.8m high, the second layer 3.5m high (3.75m including slope top) and the third layer 3.32m (3.75m including slope top).
+ 更多詳情 +

為了校核俄羅斯阿穆爾氣體處理站項目艙體結構設計的合理性,采用有限元仿真的方法,建立艙體的3維有限元仿真模型,進行靜止平放狀態下艙體承力框架、地腳螺栓的強度及計算分析;進一步的,分析艙體吊裝狀態下的艙體、起吊點和吊具強度。通過有限元仿真數據的處理,對關鍵結構件的強度及變形進行分析,最后給出變形及強度校核結果。 

3D finite element simulation model is built by the method of finite element simulation to calculate and analyze the strength of cabin bearing frames and anchor bolts in static placement, thus verifying the reasonability of the cabin structure design in the Russia Amur Gas Treatment Station Project, to further analyze the strength of the cabin, hoisting points and hoisting tools in hoisting state. The strength and deformation of key structural components are analyzed by processing finite element simulation data to finally present deformation and strength verification results.  

艙體總體尺寸:15m(總長)×4.5 m(寬)×10.5m(總高),其中一層高2.8m、二層高3.5m(含坡頂3.75m)、三層高3.32m(含坡頂3.75m)。 

Overall dimension of cabin: 15m (overall length) ×4.5m (width) ×10.5m (overall height), wherein the first layer is 2.8m high, the second layer 3.5m high (3.75m including slope top) and the third layer 3.32m (3.75m including slope top).


1.綜述 

1. General  

為了校核俄羅斯阿穆爾氣體處理站項目艙體結構設計的合理性,采用有限元仿真的方法,建立艙體的3維有限元仿真模型,進行靜止平放狀態下艙體承力框架、地腳螺栓的強度及計算分析;進一步的,分析艙體吊裝狀態下的艙體、起吊點和吊具強度。通過有限元仿真數據的處理,對關鍵結構件的強度及變形進行分析,最后給出變形及強度校核結果。

3D finite element simulation model is built by the method of finite element simulation to calculate and analyze the strength of cabin bearing frames and anchor bolts in static placement, thus verifying the reasonability of the cabin structure design in the Russia Amur Gas Treatment Station Project, to further analyze the strength of the cabin, hoisting points and hoisting tools in hoisting state. The strength and deformation of key structural components are analyzed by processing finite element simulation data to finally present deformation and strength verification results.

艙體總體尺寸:15m(總長)×4.5 m(寬)×10.5m(總高),其中一層高2.8m、二層高3.5m(含坡頂3.75m)、三層高3.32m(含坡頂3.75m)。

Overall dimension of cabin: 15m (overall length) ×4.5m (width) ×10.5m (overall height), wherein the first layer is 2.8m high, the second layer 3.5m high (3.75m including slope top) and the third layer 3.32m (3.75m including slope top).

結構強度分析報告考慮的載荷類型包括:

Load types considered in the structure strength analysis report include:

1.恒載荷

1. Dead load

2.內部設備重量載荷;

2. Weight load of internal equipment;

3.活載荷;

3. Live load;

4.雪載荷;

4. Snow load;

5.風載荷;

5. Wind load;

6.溫度載荷;

6. Temperature load;

7.地震載荷。

7. Seismic load.

強度分析時,根據設計規范,考慮恒載荷、臨時載荷(內部設備載荷、活載荷、雪載荷、風載荷、溫度載荷)和特殊載荷(地震載荷)組成的特殊載荷組合。

Consideration is given to special load combination composed of dead load, temporary load (internal equipment load, live load, snow load, wind load, temperature load) and special loads (seismic load) according to design specifications during strength analysis.


2.結構設計標準 

2. Structural Design Criteria  

采用的相關標準和規范如下:

Relevant applied standards and codes are as follows:

1)建筑規范-23-81*-鋼結構;

(1) Construction code -23-81*- steel structure:

2)建筑規范2.01.07-85*-載荷和作用;

(2) Construction code 2.01.07-85*- load and function;

3)客戶給定的技術文件。

(3) Technical documents provided by customers.

 

 

 

 

 

 

 


下一條
暫無信息
查看詳情 +
yellow日语歌中文版